SCHEDULES OF HAPTIC ILLUSIONS DESCRIBED IN LITERATURE

Haptic geometrical illusions

Definition of haptic geometrical illusions: in analogy with geometric visual illusions, geometric haptic illusions are phenomena of systematic distortion in the perception of  some specific patterns of stimuli  (bidimensional objects)

Different kinds of haptic geometric illusions: Horizontal-Vertical illusion (radial-tangential effect, vertical and bisection bias), Muller-Lyer illusion, Poggendorff illusion (uncertain), Ponzo illusion, Oppel-Kundt illusion, Delboef illusion, Zollner illusion

Perceptual processes involved: shape perception, perception of extension, relations between processes of different modalities

Presence in other modalities: vision, optical illusions

Notes: Not all the geometric visual illusions are present in the haptic modality, and when present they’re not always of the same kind
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Tactile Aftereffects

Definition of Aftereffects: Effect of a previous stimulation on the perception of a second stimulus: The exposition to movement before a static stimulus provide a movement sensation in the opposite direction; the exposition to shape stimuli (one or more) influence the perception of the form of a subsequent stimulus of a different shape.

Different kinds of aftereffects: movement aftereffect,  aftereffect of successive stimuli

Perceptual processes involved:  movement perception, space perception

Presence in other modalities: in vision waterfall illusion, spiral illusion, phi illusion (best studied than tactile aftereffects, since Wohlgemuth, 1911)

Notes: Tactile Aftereffects have been scarcely investigated. The first study in tactile motion aftereffect is Thalman, 1922 (and perhaps the only one with Hollins, Favorov, 1994)

Hollins, Favorov, 1994 regards movement aftereffect: movement sensations located on and deep in the skin following a period of stimulation in which the subjects cupped their hand around a moving drum for up to 3 min. A surface approximating a low-spatial-frequency square wave, with a smooth microtexture was especially effective at inducing the aftereffect. The aftereffect doesn’t seem to depend on conditions of stimulation while it is being experienced, but depends on adapting durantion.

Vogels, Kappers, Koenderink, 2001 regards haptic aftereffect of successively touched curved surfaces: a flat surface is more often judged to be convex after the touching of a concave surface than after the touching of a convex surface. This aftereffect increases with the time of contact  with the curved surface till it saturates, and it decreases with time-lapse between the touching of the two surfaces. These results are related in the precedent articles of the authors (see references). In the present, it is analysed the haptic aftereffect of the touching of two successive spherically curved surfaces: both surfaces contribute to the aftereffect but the aftereffect is not additive. 
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Mislocation of tactile stimuli and illusions of haptic movement

Definition of Mislocation of tactile stimuli and ilusions of haptic movement: spatial distortions in tactile perception or tactile illusions of displacement. In the first case the stimulus is perceived in a dislocated position; in the second case a series of stimuli at one point appears to be mislocalized seriatim, owing to the presence of one or more stimuli at a second place, presented close to the first one, spatially and temporally:  perception of a line connecting the two generating loci (mislocalization and saltation)

Different kinds of Mislocations of tactile stimuli and illusions of haptic movement: errors in tactile localization, saltation or illusion of the cutaneous rabbit  (tactile illusions of displacement), apparent movement, reversal of a raised letterform indenting the skin with changes in the spatial orientation of the indented skin, Aristotle’s illusion

Perceptual processes involved:  tactile perception of  form and space, body image (role of kinesthesia, role of representations), adaptive behaviour

Presence in other modalities: this kind of illusions is specific for tactile modality; adaptive behavior processes in vision and acoustics are similar but seem to follow different mechanisms

Notes: Applications in the domain of vibrotactile stimulation (great extension of studies on vibrotactile stimuli)


Benedetti, 1985 describes one of the oldest perceptual observations, Aristotle’s illusion: if one crosses two adjacent fingers one over the other and then touches these two crossed fingertips to a small ball, one will perceive a sensation of touching two balls. The explication then retained was given by Mariotte, Essay de Logique, 1678: the nerves of the crossed fingers inform the brain that the fingers are still in the uncrossed position. In 1855 Czermak descibed the inversion of sensation when fingers are crossed: a subject who touches an object having a sharp point on one side and a curved surface on the another, feels the sharp point located in the space where the real convex surface is located, and viceversa. At the end of the XIX century Robertson, Henry, Menderer concluded that the crossed fingers are perceived to be in their normal position (others books described Aristotle’s illusion but simply as a descriptive phenomenon: James, 1890, Sanford, 1900, Sully, 1881, Ziehen, 1920). In 1935 Shilder examined sensory inversion and concluded that subjects cannot perceive the displacement of body parts if in unusual position. He was criticized in 1937 by Tastevin who defined the crossed position as an artificial one, not achieved by means of muscle action: the crossed fingers are perceived to be at the limit of the voluntary movement. Benedetti, 1985 test this last hypothesis and confirm experimentally that when the finger are crossed tactile spatial information is processed as if the fingers where uncrossed and that the objects touched with the crossed fingers are perceived with the spatial properties of the extreme limits of the range of action of the fingers (no role of the spatial representation of the crossed position, tactile stimuli located in the body reference system, according to the only kinesthetic information: the limits of the fingers’ range of action). 


Benedetti, 1986 confirms the existence of a tactile diplopia (single stimulus perceived to be double) with crossed fingers (Aristotle’s illusion) also when only the cutaneous surface of the fingertip pads is displaced without crossing of the fingers, so that cutaneous areas that are normally separated are put in contact. 


Merleau-Ponty, 1945 interprets Aristotle’s illusion as a manifestation of a disturbance of the body schema. The body schema is a dynamic syntheses of the motor and perceptual habitudes of the body. The situation with the crossed fingers is one of forced movement, which is not comprised in the motor possibilities of the fingers: thus, the position with crossed fingers cannot be comprised in a movement project. Merleau-Ponty suggests that Aristotle’s illusions is an example of body-m motor  bias in perception: we perceive a unitary object when we perceive a unitary body, in others words, the syntheses of the object pass through the motor actual possibilities of the body. The motor possibilities are not physiologically conceived but existentially: they are motor habitudes, and are susceptible to be extended.


Benedetti, 1988 makes experiments about Aristotle’s illusion with fingers and tongue and shows that whilst the position sense of a movable body part is preserved, the localization of object position is lost, so to say that the spatial localization of tactile stimuli may be independent both of knowledge of body parts location and motor activity or motor commands (not only the perceived position of the stimulus doesn’t covary with the actual position of the finger, but it doesn’t covary with the perceived position of the finger). 


Benedetti, 1991 starts from the fact that  given pair of fingers has a functional range of action within which spatial perception is correct (uncrossed fingers) and beyond which perceived location of tactile stimuli is wrong, to test if this range can be modified by a long-lasting crossing. This study is related to others studies on adaptive behaviour in vision, audition (visual and acoustical reversal): crossing two finger is a classical paradigm for distorting tactile perception; this distorted perception has a dramatic influence on motor behavior such that stimulus directed movements in tactile reversal conditions are performed in the wrong direction; within 1 h of training a motor learning occurs (stimulus directed movements are performed correctly) without perceptual learning (perception remains reversed). After a longer time (days) a perceptual learning occurs: at the end of the training period the perception with the crossed fingers is correct, the reversal illusion disappears. It is interesting that after this period the perception with uncrossed fingers doesn’t change: this means that the process implicated is not adaptation, but extension of the range of action of the fingers, now comprehensive of the crossed position. This constitutes a difference with the perceptual and motor learning in the optical-reversal paradigm which is based on adaptation. As perceptual learning proceeds motor performance with corssed fingers, even without tactile feedback, greatly improves and reaches 100%; with finger uncrosses, because of the presence of an aftereffect, motor performance drops in the first part of the training period and than recovers as soon as perceptual learning is complete. The extension of the range of action suggests the existence of platic changes in the higher order tactile spatial map: the tactile perceptual system seems to develop according to the pattern of hand exploration and not to be rigidly determined on a genetic basis. If the fingers are located in new and unusual positions, the somatosensory system develops in a new and unusual way. 


Cholewiak, Collins, 2000 studies conditions that influence tactile illusions of displacement and saltatory effect, in order to use these information in the employ of vibrotactile arrays for providing informations of orientation and direction. The appearance of apparent movement and saltation in any sensory modality depends on the burst duration and interburst intervals in the sequence of activity over the series or separate loci. 
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Thermal illusions

Definition of thermal illusion: 
Different kinds of thermal illusions:  mislocalization of thermal stimuli, hot-cold perception, illusions induced by chemical or thermal stimuli

Perceptual processes involved: perception of temperature, localization of stimuli 

Presence in other modalities: 

Notes: 

Ordinarily the localization of a termal stimuli  occur in conjunction with touch, and improves touch discrimination. Pritchard,   sustained that it is only when the stimulus involves mechanical deformation of the skin that accurate localization is possible. 


Green supports Pritchard contention about inaccuracy of thermal perception. The first experiment investigate the effect of touching a warm or cold surface with the first and the third finger while simultaneously touching a neutral surface with the second one. The effect is an illusion of warm/cold referred to the tip of the second finger (on which attention is concentrated). If the middle finger is exposed to a warm stimulus while outer fingers are, the perceived warmth is enhanced (and the same for cold). In a conflict situation with outer and central temperature in disagreement, answers are not symmetric: referral of sensation of warmth to the site of a cold stimulus produces greater perceived magnitude than does referral of sensations of cold to the site of a warmth stimulation;  and the sensation of heat is sometimes produced when a cold center stimulus is bracketed by warm outer stimuli. Thus, when spatially adjacent warm and cold stimuli interact, sensations of warmth seem to dominate the intensitive aspects of the sensation. A warm stimulus looks more effective for changing the intensity of the thermal sensation. 
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Dynamic touch illusions - Iij illusions
Definition of dynamic touch illusions: Illusions regarding the perception of the shape, the extension, the orientation of an object explored with an active movement of the hand/arm: hand-held object, wielding movement. The movement and his consequences (in particular rotational inertia of the system comprehension the hand and the object) are relevant for the production of the illusion 

Different kinds of Iij illusions:  illusions about length, largeness, orientation, weight of an object, extension and orientation of limbs, relatively to an object or not

Perceptual processes involved:  perception of extension, shape, weight, orientation of an hand-held object, perception of hand/arm position relatively to an hand-held object; role of movement in haptic perception, role of inertia tensor in haptic perception, role of kinesthesia in exproprioception, proprioception and exteroception

Presence in other modalities: specificity of inertia tensor as an invariable of dynamic touch

Notes: illusions “produced” by Turvey and collegues to confirm the role of Iij in haptic dynamic perception, as find and shown in the course of the study of the size-weight illusion. The framework of these studies is constituted by the will to find invariances for the perceptual senses.  
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Weight illusions

Definition of weight illusion: under or over evaluation of the weight of an object on the basis of purely haptic or haptic and visual stimuli

Different kinds of weight illusions: Size-weight illusion: understimation of the weight of the bigger of two objects of equivalent weight, material-weight illusion: effect of density on weight perception, golf ball illusion: effct of the knowledge about the weight of two very similar weight on weight perception

Perceptual processes involved:  Inertia tensor as invariant of dynamic touch perception, role of movement in haptic perception (central movement, corollary discharges, feedforward processes, mechanical constraints of movement), role of aspectations and cognition in haptic perception

Presence in other modalities: possible role of vision

Notes: The most studied is the size-weight illusion (swi), and probably the most studied haptic illusion at all
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Shape - Extension illusions

Definition of shape-extension illusion: effects of  different qualities of the stimulus or of associated conditions on the perception of the extension and shape of an object 

Different kinds of shape-extension illusions: effect of density and diameter on length perception, effect of explorative movement and his laws 

Perceptual processes involved:  shape, extension perception; movement constraints in perception

Presence in other modalities: probably yes

Notes: 
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Illusions of a rotated disk

Definition of Illusions of a rotated disk: haptic illusions in the perception of shape and dimension of a rotated disk

Different kinds of illusions of a rotated disk: apparent elongation of a rotated disk

Perceptual processes involved:  ?

Presence in other modalities: ?

Notes:

Cormack, 1973 describes an illusion in which a coin turned end over end between thumb and forefinger feels longer to the turning hand. The same effect is not present with a rotated sphere. Illusion grow with increased disk size and higher turning rates.

Referencies on illusions of a rotated disk:
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Haptic Force-feedback illusions

Definition of haptic force-feedback illusion: effects of a law relating velocity and trajectory on the perception of the contour of a shape. This law characterise biological movement.  

Different kinds of haptic force-feedback illusions: effect of density and diameter on length perception, effect of explorative movement and his laws 

Perceptual processes involved:  shape, extension perception; movement constraints in perception; bias of biological movement in movement perception

Presence in other modalities: visual tracking of a point

Notes: Robles-de-la-Torre, Hayward, 2001 underlines that haptic perception normally is normally an active one: it entails active exploration of the object. In this exploration we experience both geometrical and force stimuli. These stimuli are correlated, but it was said that shape perception resides just in geometric cues. The experiments carried on show that people are able to identify shapes on the basis of force cues and that in the case of contradictory geometrical and force cues, force can overcome object geometry in shape perception. 
References on haptic force-feedback illusions: 
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Viviani illusion

Definition of Viviani kinesthetic illusion: effects of a law relating velocity and trajectory on the perception of the contour of a shape. This law characterise biological movement.  

Different kinds of Viviani kinesthetic illusions: effect of density and diameter on length perception, effect of explorative movement and his laws 

Perceptual processes involved:  shape, extension perception; movement constraints in perception; bias of biological movement in movement perception

Presence in other modalities: visual tracking of a point

Notes: The relationship between movement and perception is indicated by several studies on haptic and visual illusions. Viviani and collegues, demostrated the specific role of biological movement as bias for movement and shape perception.  This bias is constitued by a law relating velocity and trajectory of the movement. Trajectory and velocity of a massive object are functionally dependent. In general, their relationship is complex and depends on the instantaneous value of the acting force. Instead, the form-velocity relation of voluntary gestures is surprisingly simple in spite of the fact that the forces acting on the limb result from the action of many muscles and are time-varying. It has been shown (Viviani & Schneider, 1991) that the instantaneous velocity V(t) and the radius of curvature R(t) of the trajectory are related by the expression:

(1)                                              V(t) = K [R(t)/(1+αR(t))]1-β
In this equation the parameters α and β are constant throughout the movement. The first ranges between 0 and 0.1, depending on the average velocity. The second has a value very close to 2/3 in adults and slightly more in young children (Viviani & Schneider, 1991). The parameter K (called the velocity gain factor) is constant over relatively long segments of the trajectory. Because it was first proposed in the approximate form A(t) = K C(t) 2/3 involving angular velocity A and curvature C (Viviani & Terzuolo, 1982; Lacquaniti, Terzuolo, & Viviani, 1983), equation (1) was dubbed Two-thirds Power Law and is still known with this name. There are reasons to believe that the power law reflects the peculiar neuronal dynamics of the motor control system (Massey, Lurito, Pellizzer, & Georgopoulos, 1992; Pellizzer, 1997, Schwartz, 1994). For our purposes, it is sufficient to stress that mechanical movements (e.g. those of robotic arms) do not generally obey this law. Conversely, the peculiar V-R relation described by eq. (1) is observed in many weak-load biological movements, the exceptions - such as the arm swing during locomotion - being limited those cases where gravity and biomechanical constraints are dominant factors acting on a system with one degree of freedom. Therefore, the power law (1) is a kind of signature that can be used to tell apart rather reliably what is biological and what is not. In one experiment (Viviani & Stucchi, 1989) subjects were shown a light point tracing an elliptic trajectory. After watching ten movement cycles, they had to indicate the orientation of the mayor axis of the ellipse which could be either vertical or horizontal. The first trajectory was very elongated and the task was easy. In all subsequent trials the eccentricity changed according to a response-dependent rule. After a correct answer, the task was made more difficult by decreasing the eccentricity of the ellipse. Instead, after a mistake, the eccentricity was increased. Using a double staircase method with forced-choice response rule, the trajectory perceived as a circle was identified as the one for which responses were at chance level. The entire procedure was repeated under three cinematic conditions. In the first session, the velocity of the light point was constant; in the second one, the velocity profile at each point of the trajectory was made equal to that of a biological motion tracing an ellipse with eccentricity 0.7 and a horizontal major axis; in the last session, the velocity was that of a biological motion tracing an ellipse with eccentricity 0.7 and a vertical major axis. The rationale for these manipulations is the following. The Two-thirds Power Law predicts (and experiments confirm) that circles, and only circles, are traced at constant velocity. Thus, in the first condition, stimuli with large eccentricities were at variance with the biological model. However, the discrepancy decreased as subjects approached the point of subjective equality (trajectories perceived as circles). In the second condition upright ellipses with large eccentricities were even more deviant with respect to the biological model, whereas horizontal stimuli were roughly in agreement with it. The situation was reversed in the third condition. Thus, in the last two cases circular trajectories were viewed under cinematic conditions incompatible with the biological model. The goal then was to show that the perception of the aspect ratio (vertical axis/horizontal axis) is biased when the stimuli are not compatible with the biological model. The results confirmed the expectation. In the first condition, there was essentially no bias in the perception of the aspect ratio. In the second one, subjects perceived as circles trajectories that were actually quite elongated in the vertical direction. Moreover, the differential limen (JND) was twice as large as in the constant-velocity condition. No systematic bias emerged in the third condition. However, the differential limen was again significantly larger than in the first condition. In short, the results suggest an interaction between form and kinematics in which the decisive factor is whether or not the velocity-curvature relation is similar that that found in human limb movements. In particular, the large bias in the second condition is compatible with the hypothesis that subjects were always inclined to fit the stimuli within the biological model. When the fit was poor, they attempted to ally the discrepancy by deforming the geometry in the direction dictated by the Two-thirds Power Law. Indeed, perceiving a vertical ellipse as a circle implies a compression of the vertical extent, i.e. a flattening of the portions of the trajectory where velocity was higher. The study of the interaction between form and kinematics was pursued in a second experiment (Viviani & Stucchi, 1992). In one condition, subjects were shown a light point tracing continuously a closed random trajectory. In the course of the observation, they could control the way the velocity of the point varied along the trajectory. Subjects were informed that the control acted step by step on the value of just one parameter. At high values of the parameter, velocity increased at the point of high curvature and decreased at points of low curvature. The opposite occurred at low values of the parameter. They were also told that there was just one middle value for which velocity was constant throughout, and that their task was to find this value. During the search, the trajectory remained unchanged. The game was fair insofar as (unknown to the subjects) all possible velocity distributions were computed according with the general equation (1) and the control acted on the exponent β. Thus, when 1- β = 0 velocity was indeed constant. For 1-β < 0 the movement was grossly at odds with the biological model for it decelerated when it should have accelerated and vice-versa. For 0 < 1- β < 1/3 velocity decreased with increasing curvature, but less than it does in biological movements. For  1- β > 1/3 the biological trend was exaggerated. Finally, the movement was truly biological only for 1- β =1/3. There were five different trajectories each of which was presented 12 times with a different initial distribution of velocity determined by selecting β at random among 12 values. Figure 2 shows the results for a typical subject. Panels A to E (one for each trajectory) show the progressive convergence of the control parameter toward the value for which velocity appeared constant. Panel F shows mean and standard deviation of the β for each trajectory. The outcome of the experiment was quite clear. All subjects consistently and accurately selected the biological movement (i.e. β = 1/3) as the best approximation to a constant velocity stimulus. Moreover, when the initial β was positive, nobody, while searching for the appropriate setting of the parameter, ever approached the β = 0 corresponding to true constant velocity. Similar results were obtained both when the random trajectory was replaced by ellipses of various eccentricities and in several control conditions. The size of the illusion revealed by these experiments is surprisingly large: velocity variations as large as 250% that occurred in the biological case were not detected. After the experiment, we showed to the subjects what a true constant-velocity movement looked like; we also showed a point moving on a straight path with the velocity profile that had been perceived as constant. Both demonstrations were received with the utmost skepticism. The results described above lead to two distinct albeit related conclusions. On the one side, in formulating velocity judgments, we have access to some implicit knowledge of the motor rule expressed by the Two-thirds Power Law. On the other hand movements that comply with this rule are perceived as uniform.

The same experiments have been performed in kinesthetic conditioons, giving rise to similar results. The logic of the experiment and the stimuli were very similar to those in the first of the two studies described above (Viviani & Stucchi, 1989). The key difference was that the dynamic elliptic stimuli were not presented visually, but fed into a computerized robotic arm which drove passively the right arm of the blindfolded subject (Figure 3). The movement continued until the subject identified the orientation of the major axis of the ellipse, which he knew to be either vertical or horizontal. As in the visual experiment, the eccentricity in the first trial was so large that the orientation was easily detected, but decreased after each correct response making the task increasingly difficult. Also, we tested the same three cinematic conditions described above. In the first condition velocity was constant; in the other two the velocity profiles would be biological if the trajectory were an ellipse (eccentricity 0.7) with a horizontal and vertical major axis,  respectively. The results were even more clear than in the case of vision (Figure 4). When the biological model fit well the kinesthetic inflow near the point of objective equality (constant velocity for quasi-circular trajectories), the aspect ratio of the stimulus was perceived with a small constant error (CE) and a small differential limen (JND). Large, systematic  CEs and large JNDs were measured instead in the other two conditions where the modulation of velocity was inconsistent with the quasi-constant curvature of the trajectory. When the movement decelerated at the right and left extremes of the trajectory, the subjective circle was in fact a vertical ellipse. The symmetric bias was present in the other condition.

References on Viviani kinesthetic illusions: 
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Motor/position illusions of the arm/hand

Definition of motor/position illusions: Illusions of position and movement of the arm or of the hand

Different kinds of motor/position illusions:  illusions of position, illusions of movement of the limb induced by muscle-tendon vibration; illusions of positioning of the limb induced by previous positions (postural aftercontractions: for exemple, the subject stands in an open door and presses his extended arms forcefully against the posts; moving out after some seconds he experiences a sensation of lightness while seeing his arm rising); illusions of voluntary effort (Sternberg illusion)

Perceptual processes involved:  position and movement perception; properties of muscle spindles and others tactile-kinesthetic receptors for the illusions mechanically induced

Presence in other modalities: specific for kinesthesia

Notes: It is possible to induce the perception of “impossible” positions


Three articles by Goodwin, McCloskey, Matthews of 1972 use illusions of movement and position induced by tendon and muscle vibration to explore the role of muscle spindles in kinesthesia. The application of a vibration to a muscle as the biceps brachialis provokes a flexion on the arm which is perceived to be of minor extent of the real one; the final position of the arm is perceived to be more extended of the real; if the flexing arm is arrested at a certain moment the subject has the sensation of the arm moving in extension. In reason of the position of depart it is to induce the sensation of impossible positions. The presence of position and movement illusions related to muscle vibration, in condition of cutaneous and joint afferents paralysis, proves the importance of muscle receptors in position an movement perception. The presence of the illusion in condition of passive movements prove the importance of afferent muscular processes in kinesthesia, in opposition to the hypothesis based on the importance of central processes as corollary discharges and efferences.  


Eklund, 1972 insists on the underestimation of the movement performed thanks to muscle vibration.. 


Craske, 1977 testimonies about the induction of the perception of impossible limb positions by musle vibration. 


Cordo, Gurfinkel, Bevan, Kerr, 1995 studies the influence of tendon vibration on proprioception during movement to understand the effects of muscle vibration on coordination during movement: The results of some experiments of tendon vibration during a motor task indicate that different vibration frequencies can bias the perception of limb kinematics in opposite directions (extension or flexion); the errors caused by higher-frequency vibrations were influenced by the velocity of the movement ; and finally, the timing of tendon vibration influenced the magnitude and the direction of the perceptual bias. 


Granit, 1972 underscores the importance of the study of illusions for understanding perceptual and motor processes, because automatic processes becomes conscious. Granit describes several kinesthetic illusions other than that which dipends on the vibration of the muscle to explore the function of muscle spindles in proprioception.  (Exemple: Hollinghworth’s illusion: a subject was pulling on a carriage moving along a track on which it could be stopped unexpectedly; the order was to shift the carriage 1,2,3 feet at a constant speed; errors of judgement were small as much as the movement was free, but when the movement was momentarily arrested the subject made positive errors. The illusion could not be abolished by training and the subject doesn’t recognize it. Other example: Sternberg illusion: the subject flexes the muscles at all joints of his index finger maximally, and, keeping the thumb freely hanging down, extends the remaining three fingers and presses them against a table to produce a maintained state of maximum extension. If he then closes his eyes and starts “willing” to extend the top of the index finger he feels after some time that he has been successful.) 


Naito, Ehrsson, Geyer, Zilles, Roland, 1999, examines which areas in the brain are activate when the subjects perceive kinesthetic illusions. The supplementary motor are, the caudal cingulate motor area, the dorsal premotor cortex, and area 4a were all activated during illusions, in other words: motor areas instead of somatosensory area seem to convey the illusion of limb movement.
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Effect of haptic illusions on movement
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Haptic illusions induced by other sensory modalities (intersensory illusion by touch)

Definition of intersensory illusion by touch: Illusions of tactile perception induced by the conflict with informations from different perceptual modalities

Different kinds of intersensory illusion by touch:  perception of extension, perception of shape, perception of texture, proprioception

Perceptual processes involved: binding, intersensory interaction, dominance; multimodal perception of shape, extension, texture, proprioception

Presence in other modalities: stimuli vehiculated by touch can influence and be influenced by stimuli vehiculated by others modalities

Notes: Conflicts and interactions may regard vision and touch, vision and proprioception, audition and touch, temperature and touch

The production and analysis of intersensory conflict constitutes an interesting tool for the exploration of the relationship between perceptual modalities, in particular for what regards:

· the way different perceptual modalities combine each other in the perception of an unique and coherent object (binding problem)

· - the relevance of a specific modality in determining a percept (shape, extension, …) - the possibility for a perceptual modality to induce perceptual illusions in an other modality, in other words to influence the processing of information in a different modality.

In the case of conflict the perceptual system can ‘choose’ to rely on the informations furnished by a single modality, and ignore the rest, or to take count of all the information available. The consideration of all the information can be a reason of confusion or not, the preference for a modality can be rigid, or it can depend on circumstances to be defined. A large part of the literature dedicated to intersensory conflict regards dominance, and in particular visual dominance over other modalities. Dominance paradigm was for instance affirmed by Ryan (1940): vision is dominant over other modalities when conflicting information is presented. 

Rock and his colleagues investigated the conflict between vision and touch in the perception of shape and size (Rock, Harris, 1967; Rock, Victor, 1964) by presenting subjects a square through a cloth while looking at it through reducing lenses. The subjects had to give a single judgment about the size or the shape of the object (making haptic matches, visual matches and drawing the stimuli using sight). The results show a visual dominance, despite the fact that visual perception is not veridical. Rock’s experiments have long been influential and the dominance of vision over touch has become a convincing paradigm. This paradigm relies on another hypotheses by Rock, Victor (1964): the discrepancy paradigm, for which subjects assume that the object they are feeling and seeing is the same and unique, so that there is no conflict. Subjects will have no difficulty in making judgments about size for they will simply chose one modality (vision) and rely on that one, ignoring conflicting informations.

Heller, Calcaterra, Green, Brown (1999) criticize the invariability of visual dominance over touch by citing some examples from literature and performing a series of experiments in more ecological conditions than Rock’s:

- memory could affect the resolution of conflict because the conditions of delay may influence tactual or cross-modal judgments more than visual judgments (Abravanel, 1973; Cashdan, 1968; Cashdan, Zung, 1970; Zung, Butter, Cashdan, 1974)

- visual dominance could appear only in special conditions, as for common objects (Power, 1980; Power, 1981)

- visual dominance is not evident with texture perception (Heller, 1982; Heller, 1989; Lederman, Abbott, 1981), nor when vision is blurry (Heller, 1983) or manipulated by a mirror (Heller, 1992). In all these experiments vision of the exploring hands is available

- neither sense dominates when subjects are exposed to a conflict between vision and touch (obtained minifying lens reducing the visual dimension of a square simultaneously seen and touched, as in Hershberger, Misceo, 1996) when people are allowed to see their exploring hands and the tactual and visual judgments are made matching a visual or tactile standard (match with a series of visual squares or with a series of haptic ones). Matching modality is not influential, for size judgments are quite identical in the two conditions and are approximately midway between those obtained in visual and haptic control conditions without conflict. This result is in contrast with Hershberger, Misceo (1996) in which subjects resolved the conflict in favor of touch when haptic matching was required, and in favor of vision in visual matching conditions. As for Rock’s experiments they were used  sequential matching procedures (the visual or haptic match was successive to the evaluation of the stimuli), so that results could depend on differences of retention between vision and touch. Heller, Calcaterra, Green, Brown (1999) second experiment shows the importance of seeing one’s own hand minified by the lens in making visual judgments about size (increase of the size magnitudes through trials). In experiments 3 and 4 subjects were required to make absolute judgements: using sight of a ruler for the visual matching modality and a pincers posture for the haptic one. In this case the results were similar to those of Hershberger, Misceo (1996): visual dominance for visual matching conditions and haptic dominance for the pincer posture used as indication of the size of the object. The authors suggest that visual dominance may be limited to the matching or drawing conditions, and depend on the procedures of size estimation for the haptic modality. Visual dominance despairs when sight of the exploring hand is allowed and haptic dominance can be noticed when subjects are able to provide size estimates with touch in a way that doesn’t demands mnemonic and attentional capabilities.


DiFranco, Beauregard, Srinivasan, 1997 investigate the usefulness of multisensorial information to expand the range of haptic experiences in virtual environments. The experiments performed examine the influence of sound in the haptic  perception of stiffness.  The subjects have to order some surfaces on the ground of perceived stiffness. The surface are all of the same stiffness, and they are associated with different sounds of contact. The results show that the association with the sound typical for a harder surface makes the surface touched fell harder, especially for subjects who haven’t performed a training experiment just with touch modality.


Ramachandran has long studied phantom limb in amputees and tried to intervene on phantom limb painful paralyses. He has succeeded with a device called “virtual reality box” which make possible to the amputee to visualise his missing hand thank to the interposition of a mirror that reflects the present hand while moving. Visual control make it possible for the patient to control the absent hand, which has no proprioceptual sensations: in other words, vision entails proprioceptual illusions. This also if the hand reflected is not the one of the patient but those of the observer, and if the movement realised is an “impossible” position. 
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Computer haptics illusions 

Definition of computer haptics illusions: various and different haptic illusions produced in the context of 

Different kinds of computer haptics illusions:  reproduction of various just known haptic illusions, illusions produced in virtue of the characteristics of haptic devices in virtual environments

Perceptual processes involved: haptic perception

Presence in other modalities: vision, audition

Notes: As in the case of Heyde, Hager-Ross,1998 some classical perceptual errors have been reproduced in machine haptics context, as size-weight illusion. 

Ernst, Banks, 2001 adapts to the computer domain studies intersensory integration and conflict, showing sound in enhancing the  role of haptic versus visual perception. 

Srinivasan, Basdogan, 1997 note the importance of other modalities in haptic perception, as in the case of sound collision. 

Srinivasan, Beauregard, Brock, 1996, indicates that visual sensing dominates over proprioception and leads to severe misjudgements of object stiffness if the graphic display is intentionally skewed. 

Kirpatrick, Douglas, 1999 shows how haptic and vision interaction differs from a simple addiction.
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